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Abstract

A group-theoretical analysis is made of the structures
derived from the aristotype cubic perovskite (Pm3Åm) by
the simple tilting of rigid octahedral units. The tilting is
mediated by the irreducible representations R�

4 and M�
3

or the two in combination. These result in 15 possible
structures, compared with the 23 possibilities suggested
previously by Glazer [Acta Cryst. (1972), B28, 3384±
3392]. The analysis makes the group±subgroup relation-
ships apparent.

1. Introduction

Structures in the perovskite family ABX3 have held the
interest of crystallographers over many years (Kay &
Bailey, 1957; Glazer, 1972, 1975; Megaw, 1973; Thomas,
1989, 1996; Burns & Glazer, 1990; Woodward, 1997a,b)
and continue to attract a wider interest on account of
their fascinating electrical and magnetic properties.
Perovskite compounds exhibit ferroelectricity, piezo-
electricity and non-linear optical behaviour (Newnham
& Ruschau, 1991), and certain closely related
compounds are famous as high-temperature cuprate
superconductors (Cava et al., 1987; Capponi et al., 1987).
The majority of materials displaying giant magneto-
resistive effects are compounds with the perovskite
structure (Gong et al., 1995).

The ideal perovskite, being cubic, in space group
Pm3Åm, is a particularly simple structure, but it is also a
demanding one, because, aside from the lattice para-
meter, there are no variable parameters in the structure.
Consequently, the majority of perovskites are in fact
distorted perovskites (hettotypes). Three different types
of distortions have been identi®ed (Megaw, 1973):
distortions of the BX6 octahedral units, B-cation
displacements within the octahedra, and the tilting of
the BX6 octahedra relative to one another as practically
rigid corner-linked units. The third type of distortion,
octahedral tilting, is the most common type of distortion
and forms the subject of this paper.

The most promising approach to the classi®cation of
perovskites with octahedral tilting is to consider ®rst the
possible tilting patterns and then to ®nd the corre-
sponding subgroups. This approach has been used by

Glazer (1972), who developed a description of the
different tilting patterns and then obtained space groups
by inspection. We review Glazer's work, brie¯y, in the
next section, because we shall make use of his notation
in this paper. The group-theoretical analysis adopted in
this paper and described in the third section is devel-
oped along similar lines. The different possible tilting
patterns are ®rst described by different vectors in a
representation space and then for each tilting pattern
(vector) the required space group is the isotropy
subgroup, comprising the operations which leave that
vector invariant.

The analysis yields a list of 15 possible space groups
for perovskites derived through octahedral tilting. A
connection is made to the (23) tilt systems given
previously by Glazer (1972, 1975). The group±subgroup
relationships are derived and displayed. It is interesting
to note that all known perovskites based on octahedral
tilting conform with the 15 space groups on our list, with
the exception of one high-temperature structure which
seems poorly determined.

2. Octahedral tilting

The ideal cubic perovskite is commonly visualized as a
three-dimensional network of regular corner-linked BX6

octahedra, the B cations being at the centres of these
octahedra and the A cations being centrally located in
the spaces between them. The tetrad axes of the octa-
hedra coincide with the crystallographic cubic axes.

The majority of distorted perovskites are derived
from the cubic aristotype by the practically rigid tilting
of the octahedral units. By this we mean the tilting of
octahedra around one or more of their symmetry axes,
maintaining both the regularity of the octahedra (any
distortions at most second order in the tilt angle) and
their corner connectivity (strictly). Such tilting allows
greater ¯exibility in the coordination of the A cation,
while leaving the environment of the B cation essentially
unchanged.

Glazer (1972) found it convenient to describe octa-
hedral tilting in terms of component tilts around
`pseudo-cubic' axes, that is, the cubic axes of the aris-
totype. It becomes apparent that a tilt around one of



these axes determines (via the corner connections) the
tilts in directions perpendicular to this axis, but that
successive octahedra along this axis can be tilted in
either the same or opposite sense. Glazer describes the
tilting using symbols of the type a#b#c#, in which the
literals refer (in turn) to tilts around the [100], [010] and
[001] directions of the aristotype, and the superscript #
takes the value 0, + or ÿ to indicate no tilt around an
axis or tilts of successive octahedra in the same or
opposite sense. Letters are repeated to indicate equal
tilts around the different pseudo-cubic axes. Glazer's
notation, which we use in this paper, is described at
greater length in the original paper by Glazer (1972) and
in the recent work by Woodward (1997a). Glazer drew
out the different possible schemes for octahedral tilting
and examined his results for lattice centring, and for
other symmetry elements such as mirror planes and
rotation axes. The subgroups were accordingly deter-
mined by inspection. 23 tilt systems were identi®ed and
classi®ed in this way. We shall return to Glazer's (1972)
results later.

3. Group-theoretical analysis

In line with Glazer (1972), we consider those simple tilt
systems that can be described in terms of certain basic
component tilts around the pseudo-cubic axes. These
component tilts are each tilts around one axis only and
repeat periods of more than two octahedra are speci®-
cally excluded. Allowing for tilting of successive octa-
hedra along this axis in the same or opposite sense, and
for tilting around any of the three pseudo-cubic axes,
there are six basic component tilt systems. The tilt
systems of interest then can be expressed to ®rst order as
linear combinations of these six component tilts. We
recognize that the coef®cients in this expression span a
six-dimensional reducible representation of the parent
space group Pm3Åm, in fact, M�

3 � R�
4 . Finally, we use

well established group-theoretical methods to identify,
for each pattern of tilting, the isotropy subgroup,
comprising those operations of the parent group that
leave this pattern of tilts invariant. A similar approach
has been used to obtain possible tilt systems in perovs-
kite-like structures (Hatch & Stokes, 1987, 1988; Hatch
et al., 1989), but it has not hitherto been applied to the
perovskites themselves.² The various steps are
explained more fully in the paragraphs that follow.

Each of the tilt systems we wish to consider can be
written as a superposition of the six component tilt
systems just described. We write these component tilt
systems as: a�b0b0, b0a�b0, b0b0a�, aÿb0b0, b0aÿb0 and
b0b0aÿ. The notation owes much to Glazer, but for the

moment we take all the tilts to be of the same (say `unit')
angle. We shall introduce different tilt angles later. The
six basic component tilt systems form a set of basis
functions {'1, '2, '3, '4, '5, '6}. When an element g of
the parent space group G0 = Pm3Åm operates on any one
of these basis functions, the result is some linear
combination of these six basis functions (basic tilts)

g'i �
X6

j�1

'jD�g�ji:

For example, a 90� rotation about the z axis (denoted by
g = C�

4z) takes a�b0b0 into b0a�b0 and takes b0a�b0 into
ÿa�b0b0 (clockwise tilt around the y axis becomes an
anticlockwise tilt around the x axis), while leaving
b0b0a� unchanged, so that

D�C�
4z� �

0 ÿ1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 ÿ1 0

0 0 0 1 0 0

0 0 0 0 0 1

0
BBBBBB@

1
CCCCCCA
:

As another example, the translation by a distance a
along the x axis (denoted by g = a1) takes a+b0b0 into
itself, but carries every other basis function into its own
negative, the sign of the tilt around the y or z axis being
reversed because of the corner-connectivity constraint.
The matrix in this case is

D�a1� �

1 0 0 0 0 0

0 ÿ1 0 0 0 0

0 0 ÿ1 0 0 0

0 0 0 ÿ1 0 0

0 0 0 0 ÿ1 0

0 0 0 0 0 ÿ1

0
BBBBBB@

1
CCCCCCA
:

In this way every element g 2 G0 is mapped onto a
matrix D(g) and the set of matrices D(g) form a repre-
sentation of G0.

The representation presented in the previous para-
graph is reducible, since no element of g mixes the ®rst
three basis functions (corresponding to + tilt systems)
with the last three (ÿ tilt systems). In fact, this six-
dimensional representation can be decomposed into two
three-dimensional irreducible representations (irreps).
With the aid of the computer program ISOTROPY (see
Appendix A) and using the notation of Miller & Love
(1967), we identify these two irreps as M�

3 (carried by
the basic + tilt systems) and R�

4 (carried by the ÿ tilt
systems), and denote the six-dimensional reducible
representation by the direct sum M�

3 � R�
4 . The

distortions associated with irreps M�
3 and R�

4 corre-
spond to the freezing of vibrations (phonons) with k
vectors at high-symmetry points on the surface of the
®rst Brillouin zone.

² Note added in proof: The authors have recently become aware of an
analysis of perovskites by Aleksandrov (1976) by methods somewhat
similar to those described here. The results are similar but not identical
to those given here.
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Let us now de®ne an `order parameter' g = (�1, �2, �3,
�4, �5, �6), where the component �i is proportional to the
tilt angle associated with the basis function 'i. The order
parameter speci®es the linear combination of basis
functions, which de®nes a particular tilt system. For
example, the tilt system a0b+cÿ (Glazer's notation) is
denoted by g = (0b000c). A tilt system ' can thus be
written in the form

' �
X

i

�i'i:

An operation on ' by an element g 2 G0 results in

g' �
X

i

�ig'i �
X

i

�i

X
j

'jD�g�ji

�
X

j

X
i

D�g�ji�i

" #
'j:

It now becomes possible to take the basis functions 'i as
®xed and consider the operation g to act on the order
parameter g rather than on the basis functions 'i. The
equation for such an operation reads

g�j �
X

i

D�g�ji�i

and it can be seen that the six-dimensional order-para-
meter space carries the representation M�

3 � R�
4 of

interest.
We are now in a position to obtain subgroups of G0.

Given a particular order parameter g, the space group G
of the corresponding tilt system comprises those
elements g 2 G0 which keep g invariant, that is for which

gg � g:

Such a space group G is termed an isotropy subgroup of
G0. Group-theoretical methods for enumerating
isotropy subgroups have been developed by Hatch and
Stokes (Hatch, 1984; Stokes & Hatch, 1984, 1988; Hatch
& Stokes, 1985, 1986, 1987, 1988), and have been
implemented in ISOTROPY. The complete list of
isotropy subgroups of Pm3Åm for the representation M�

3� R�
4 contains every possible tilt system that can be

obtained from linear combinations of the six basis
functions '. This list, generated using ISOTROPY,
consists of 25 distinct isotropy subgroups² in the present
case. By distinct we mean subgroups which are not
equivalent to each other. For example, the tilt systems
a+b0b0 and b0a+b0 are equivalent since a 90� rotation
about the z axis brings one into the other; they are
merely different domains. The 25 distinct isotropy
subgroups can be culled to 15 by considering only
`simple' tilt systems, in which the tilts around a particular
axis have the same magnitude and either the same sign
(the + pattern) or alternating signs (the ÿ pattern). This
restriction excludes, for example, the tilt system corre-

sponding to g = (a00b00), for this would be super-
position of the basic tilts a+b0b0 and aÿb0b0, constituting
a system in which the tilts around the x axis would differ
in magnitude in addition to any difference of sign. In
Table 1 we present the 15 possible space groups²
obtained in our analysis.

Table 1 gives pertinent information on the perovskite
structures resulting from octahedral tilting. In addition,
group±subgroup relations can be obtained from it.
These are of particular interest in the study of perovs-
kites adopting different structures (for example, at
different temperatures) and in the analysis of the phase
transitions then occurring. The group±subgroup rela-
tions can be found from an examination of the order
parameter g. The order parameter in the different
isotropy subgroups can be seen to span subspaces of the
six-dimensional order-parameter space, for example,
(00c000), (0bb000) and (aaa000) span one-dimensional
subspaces, and (abc000) a three-dimensional subspace.
An isotropy subgroup corresponding to order parameter
g0 will be a subgroup of that corresponding to order
parameter g if (a) the dimension of the subspace
spanned by g0 is larger than that spanned by g and (b) g
can be changed into g0 by an in®nitesimal change in its
components. Referring to the four subspaces mentioned
above, the three-dimensional subspace (abc000)
contains each of the three one-dimensional subspaces
(00c000), (0bb000) and (aaa000). It follows that Immm is
a subgroup of each of P4/mbm, I4/mmm and Im3Å . The
group±subgroup relations for the tilt systems in Table 1
are shown schematically in Fig. 1. Note that in some
cases the group±subgroup relation does not actually
apply to the particular domains shown in the ®gure. For
example, a0b+cÿ is not a subgroup of a0a0c+; it is a
subgroup of a0b+a0, which is another domain of a0a0c+.
Fig. 1 also shows which phase transitions between
group±subgroup pairs are required to be ®rst order by

Fig. 1. A schematic diagram indicating the group±subgroup relation-
ships among the 15 space groups of Table 1. A dashed line joining a
group with its subgroup indicates that the corresponding phase
transition is required by Landau theory to be ®rst order.² Including the space group Pm3Åm of the aristotype itself.

784 OCTAHEDRAL TILTING IN PEROVSKITES



the Landau theory of phase transitions (Landau &
Lifshitz, 1980). We obtained this information for each of
the group±subgroup pairs using ISOTROPY.

4. Discussion

4.1. Comparison with previous results

In comparing our results in Table 1 with those from
Glazer (1972, 1975), the ®rst point to note is that our
group-theoretical analysis gives only 15 tilt systems
compared with Glazer's 23. Woodward (1997a) lists the
same 23 tilt systems as Glazer. The reason that the eight
extra tilt systems are not on our list is that each of them
has higher symmetry than required by the corre-
sponding space group. Of course, in listing only 15
distinct space groups in his tables, Glazer was fully
aware of this fact.

For example, tilt system a0b+bÿ (#18), with equal tilts
around y and z axes, has space-group symmetry Cmcm.
This is the same space-group symmetry as tilt system
a0b+cÿ (#17), in which the tilt angles around the y and z
axes are not equal. However, there is no operation in
this space group which changes tilts around the y axis
into tilts around the z axis, so the space-group symmetry
does not require the tilt angles around the y and z axes
to be equal. Furthermore, the tilt patterns that dictate
the orthorhombic symmetry will also result in inter-
atomic forces which produce different tilt angles around
the y and z axes. A real crystal may actually exhibit an
a0b+cÿ tilt pattern where the two tilt angles denoted by b
and c are almost equal, but they cannot be exactly equal.
Therefore, the tilt system a0b+bÿ will never be observed
in any real crystal and should not appear in a list of

possible tilt systems of the perovskite structure. The
same consideration applies to tilt systems a+b+b+ (#2)
and a0b+c+ (#15), which have the same symmetry as
a+b+c+ (#1), tilt system a+aÿcÿ (#9), which has the same
symmetry as a+bÿcÿ (#8), and tilt system a+aÿaÿ (#11),
which has the same symmetry as a+bÿbÿ(#10). It is
interesting to note that in a detailed analysis of tilt
systems a�a�a�, aÿaÿaÿ, a�a�aÿ and a�aÿaÿ, O'Keeffe
& Hyde (1977) ruled out a+a+aÿ and a+aÿaÿ on
geometrical grounds.

A different problem arises with tilt system a+b+cÿ

(#4), along with tilt systems a+b+bÿ (#6) and a+a+aÿ (#7),
which are shown with space-group symmetry Pmmn.
This space group does not appear in the list of Table 1.
However, we do ®nd this space group on our complete
list of isotropy subgroups. The order parameter for
Pmmn is g = (abc00d). We culled this subgroup from our
list because of the presence of both + and ÿ tilt patterns
around the z axis. In other words, the space-group
symmetry of a+b+cÿ also allows a + tilt pattern along the
z axis. This means that the tilt patterns that dictate the
Pmmn symmetry will also result in interatomic forces
which produce tilt angles around the z axis, which may
alternate in sign but must differ in magnitude. A real
crystal could only approximately exhibit the a+b+cÿ tilt
pattern. Neither could the tilt systems with equal angles,
a+b+bÿ and a+a+aÿ, be physically realized. As we are
only considering crystal structures which exhibit exact +
or ÿ tilt patterns, a+b+cÿ and the other tilt systems in
Pmmn have been omitted from our list.

There are two more differences between our results
and those of Glazer (1972). First, we ®nd the space
group for tilt system a0b+b+ (#16) to be I4/mmm, in
agreement with the space group as corrected by Glazer

Table 1. Isotropy subgroups of Pm3Åm for the representation M�
3 � R�

4

For each subgroup we give the order parameter g, the tilt system using the notation of Glazer (1972, 1975; and Glazer's sequence number) and the
space-group symmetry (and number), along with its lattice vectors (in terms of the lattice vectors of Pm3Åm) and its origin (in terms of the lattice
vectors of Pm3Åm with respect to the origin of Pm3Åm). The lattice vectors and origins are given for the conventional settings of space groups in
International Tables for Crystallography (Hahn, 1983). The hexagonal setting is used for R3Åc. The second origin choice is used for P42/nmc. The
setting with unique axis b, cell choice 1, is used for the monoclinic space groups.

g Tilts Space group Lattice vectors Origin

(000000) a0a0a0 (#23) Pm3Åm (#221) (100), (010), (001) (000)
(00c000) a0a0c+ (#21) P4/mbm (#127) (110), (1Å10), (001) (000)
(0bb000) a0b+b+ (#16) I4/mmm (#139) (020), (002), (200) �12 1

2
3
2�

(aaa000) a+a+a+ (#3) Im3Å (#204) (200), (020), (002) �12 1
2

1
2�

(abc000) a+b+c+ (#1) Immm (#71) (200), (020), (002) �12 1
2

1
2�

(00000c) a0a0cÿ (#22) I4/mcm (#140) (110), (1Å10), (002) (000)
(0000bb) a0bÿbÿ (#20) Imma (#74) (011), (200), (011Å) (000)
(000aaa) aÿaÿaÿ (#14) R3Åc (#167) (1Å10), (01Å1), (222) (000)
(0000bc) a0bÿcÿ (#19) C2/m (#12) (02Å0), (200), (011) �12 1

2 0�
(000abb) aÿbÿbÿ (#13) C2/c (#15) (21Å1Å ), (011Å), (011) �12 1

2 0�
(000abc) aÿbÿcÿ (#12) P1Å (#2) (011), (101), (110) (000)
(0b000c) a0b+cÿ (#17) Cmcm (#63) (200), (002Å), (020) �12 0 1

2�
(a000bb) a+bÿbÿ (#10) Pnma (#62) (011), (200), (011Å) (000)
(a000bc) a+bÿcÿ (#8) P21/m (#11) (01Å1), (200), (011) (000)
(aa000c) a+a+cÿ (#5) P42/nmc (#137) (200), (020), (002) (001Å)
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(1975). Secondly, we ®nd the space group for tilt system
a+a+cÿ (#5) to be P42/nmc rather than Pmmn. Leinen-
weber & Parise (1995) also concluded that this system is
correctly described in P42/nmc. They do not give their
argument in full, but the space group is presumably
assigned by inspection of the symmetry elements, in the
manner of Glazer's original work. Woodward (1997a)
asserts that the a+a+cÿ tilt system cannot be produced by
rigid rotations of the octahedra (see x4.3). The corner-
linking requires distortion of the octahedra. The space-
group symmetry depends on how the octahedra are
distorted. He concludes that actual compounds probably
crystallize in P42/nmc, the more symmetric of the
available space groups. In addition, we note that
Glazer's space-group symmetry Pmmn does not require
the tilt angles around the x and y axes to be equal and
also, as discussed above, allows a + tilt pattern around
the z axis to be superimposed on the ÿ tilt pattern
around the same axis.

4.2. The known perovskite structures

In this section we consider the extent to which the
experimentally determined structures of perovskites
with octahedral tilting are in accord with the scheme
given in Table 1. Fortunately, for this purpose, the
perovskite literature has been reviewed recently by
Woodward (1997b) and we base our comments entirely
on the results of his review. Woodward focused on
®nding perovskites in the less common tilt systems and
his literature search for examples of these was very
thorough.

Woodward (1997b) records the results of his literature
survey in the form of a tabulation (Tables 2 and 3 in his
paper) of known examples of the different tilt systems.
A number of interesting observations can be made by
examining Woodward's tables, for example, the
preponderance of perovskites in space group Pnma (tilt
system a+bÿbÿ), which is the structure adopted by the
mineral perovskite, CaTiO3, itself. It is of greater
interest in the context of this work to note which tilt
systems are observed and which are not. An examina-
tion of Woodward's tables reveals that examples in 12 of
our 15 space groups have been reported to date ± only
for I4/mmm, Immm and C2/c are examples yet to be
found.

The only structure which appears not to ®t our
scheme is that reported for NaNbO3, in the temperature
range 753±793 K. This structure has been given as
a+b+cÿ, space group Pmmn, by Ahtee et al. (1972),
largely on the evidence of the X-ray lattice parameters.
The structure was taken to be orthorhombic, with
unequal pseudo-cubic subcell parameters, and the
structure was assigned on this basis, even though the
intensities (speci®cally the absences) were not
accounted for by this assignment. We speculate that the

structure might be monoclinically distorted and more
accurately described in space group P21/m.

We emphasize that, except for the one possibly
dubious exception noted just above, every experimen-
tally determined tilt system found by Woodward's
(1997b) literature search is on our list of isotropy
subgroups in Table 1. The tilt systems of Glazer which
have been omitted from Table 1 have not been experi-
mentally observed.

4.3. Octahedral distortions

The tilting of octahedra might be accompanied by
slight distortions, although we have already decreed that
the differences from regular octahedra should be at
most second order in the tilt angle. Woodward (1997a)
has discussed these distortions at some length, on the
basis of computer calculation of coordinates, and has
concluded that distortions of BX6 octahedra are
geometrically necessary in tilt systems a0b+cÿ (#17) in
Cmcm, a+a+cÿ (#5) in P42/nmc and in certain other tilt
systems which appear in Glazer's work, but not in ours.
The question of small distortions of the octahedra is not
central to this work. However, since there appears to be
some problem with Woodward's analysis, we take the
opportunity to address it here.

In the aristotype perovskite, in Pm3Åm, the octahedra
are necessarily regular. All the hettotypes allow distor-
tions and, in general, we expect them, although the
geometry may not require them. The simple tilt system
a0a0c+ (#21) in P4/mbm is an example of a system which
permits octahedral distortions, but does not necessitate
them. If we suppose the octahedra are rotated by the
angle ' around the z axis [refer to Fig. 1b in Woodward's
(1997a) paper], then it can be seen that the octahedra
will be regular provided a/c = cos '(21/2). If the ratio a/c
differs from this (and it cannot be expected to have
exactly this value), then the octahedra will be either
axially elongated or compressed. This result, obtained
here by inspection, can be con®rmed by the methods to
be outlined below. The tilt system a0a0cÿ (#22) in
I4/mcm can be considered in a similar way.

We have systematically examined all the 15 tilt
systems in Table 1. For each system we have ®rst written
down the coordinates of the B cation and of three
neighbouring X anions which de®ne the octahedron
about B. (In every case the B cation is at a centre of
inversion.) From these coordinates, we write down in
fractional crystallographic coordinates the three (at
least notionally) orthogonal BX vectors which de®ne the
octahedron. Taking account of the lattice parameters,
these three vectors can be written in terms of rectan-
gular Cartesian coordinates. We then consider whether
and under what conditions the three vectors de®ning the
octahedron can be orthogonal and of equal length. In
some cases the solution has been assisted by examining
whether the three vectors can be expressed in the form
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m1 � �D cos cos 'ÿ D cos � sin ' sin ;

ÿ D sin cos 'ÿ D cos � sin ' cos ;

D sin � sin '�
m2 � �D cos sin '� D cos � cos ' sin ;

ÿ D sin sin '� D cos � cos ' cos ;

ÿ D sin � cos '�
m3 � �D sin sin �;D cos sin �;D cos ��

obtained by rigid rotation, through the Euler angles ', �
and  (Goldstein, 1965), of the vectors (D,0,0), (0,D,0)
and (0,0,D). Since the vectors (D,0,0), (0,D,0), (0,0,D)
de®ne a regular octahedron, with BÐX separation D, so
do the vectors m1, m2 and m3. We give two examples of our
analysis below.

For the case of tilt system a0b+cÿ (#17) in Cmcm, we
consider the cation B at (1

4,
1
4,0) and the neighbouring

X anions at (1
2 ÿ x,12,0) with x ' 1

4, at (1
2,

1
2 ÿ y,z) with y ' 1

4

and z ' 0, and (x,y,14) with x ' 1
4 and y ' 1

4. The three BÐ
X vectors, in fractional coordinates, are (1

4 ÿ x,14,0) with x
' 1

4, (1
4,

1
4 ÿ y,z) with y ' 1

4 and z ' 0, and (xÿ1
4,y ÿ 1

4,
1
4)

with x ' 1
4 and y ' 1

4. Multiplying the fractional coordi-
nates by the relevant lattice parameters transforms these
fractional coordinates to Cartesian coordinates. With
obvious abbreviations, then the three BÐX vectors are
(a/4,"1,"2), ("3,b/4,0), ("4,"5,c/4). The variables "i are
de®ned so that they are zero when the tilt angles are
zero. The symmetry of Cmcm allows each of the vari-
ables "i to take on any value. The problem now is to
determine values of a, b, c, "1, "2, "3, "4 and "5 which
make these vectors orthogonal and of equal length. This
is equivalent to identifying these vectors with m1, m2 and
m3. A solution is found by setting ' = ÿ�/2. We obtain
a � 4D cos � sin , b � 4D sin , c � 4D cos �, "1 �
D cos � cos , etc. By these means we ®nd a regular
octahedron in tilt system a0b+cÿ, a system in which,
according to Woodward (1997a), the octahedra are
necessarily distorted.²

In the case of tilt system a+a+cÿ (#5) in P42/nmc, we
consider the cation B at (0,0,0) and the neighbouring
anions X at (1

4,y,z) with y ' 0 and z ' 0, at (1
2 ÿ y,14,z ÿ 1

2)
with y ' 1

2 and z ' 1
2, and at (1

2 ÿ x,x ÿ 1
2,

1
4) with x ' 1

2.
Since the B atom is at the origin, the anion positions also
represent the BÐX vectors in the octahedron. Multi-
plying fractional coordinates by the relevant lattice
parameters, and abbreviating as above, gives for the
three BÐX vectors (a/4,"1,"2), ("3,a/4,"4) and
("5,ÿ"5,c/4). The question again is whether we can ®nd
values for a, b, c, "1, "2, "3, "4 and "5 which make these
vectors orthogonal and of equal length. We attempt to
identify these vectors with m1, m2 and m3. Identifying the
third of our vectors here with m3 implies cos � ÿ sin ,
that is  = ÿ�/4. It is then necessary to equate the

components with values a/4, leading to cos ' �
cos � sin ' � sin '� cos � cos ', implying either cos ' �
sin ', ' = �/4 or cos � � 1, � = 0. Both these solutions are
valid, but neither represents the tilt system we have
assumed. The ®rst, corresponding to Euler rotations ' =
�/4, �,  = ÿ�/4, represents a rotation of the octahedron
around [110], and the second, corresponding to the
rotations ', � = 0,  = ÿ�/4, represents a simple rotation
about the z axis. We conclude that the tilt system a+a+cÿ

(#5), in P42/nmc and requiring two independent tilt
angles, cannot be realized without octahedral distortion.

As already mentioned, the octahedra in the aristotype
perovskite are necessarily regular. We ®nd that the only
tilt system in which the octahedra are necessarily
distorted, on geometrical grounds, is the system a+a+cÿ

(#5), for which two independent tilts must be accom-
modated in the tetragonal symmetry of P42/nmc.
Departures from regularity are not necessary in the
other tilt systems, but are allowed by the space-group
symmetry and certainly expected.

5. Summary

Group-theoretical methods have been applied to the
classi®cation of perovskites with octahedral tilting. The
analysis leads to 15 simple, distinct, tilt patterns. The
space groups and other pertinent data have been
recorded in Table 1. The group±subgroup relationships
have been derived and are shown in Fig. 1.

In previous studies, Glazer (1972, 1975) and, more
recently, Woodward (1997a) have given 23 possible tilt
systems. The eight tilt systems missing from our list have
higher symmetry than the corresponding space groups.
Corrections to space groups proposed by Glazer (1975)
and Leinenweber & Parise (1995) have been con®rmed.

The known perovskites based on octahedral tilting
conform with the 15 patterns on our list, with the
exception of one high-temperature structure which may
warrant further investigation.

The question as to whether octahedral distortion is
associated with octahedral tilting has been considered.
In the ideal perovskite the octahedra are required to be
regular. Among the perovskites with tilted octahedra we
®nd only one system in which the octahedra are neces-
sarily distorted. Departures from regularity are possible
and indeed expected in the other systems, but not
required by the geometry.

We are hopeful that the data on tilt systems presented
in Table 1, and the group±subgroup relationships shown
schematically in Fig. 1, will prove to be of assistance to
those studying perovskite structures and the transfor-
mations between them.

APPENDIX A
ISOTROPY is a computer program which applies
group-theoretical methods to the analysis of crystal

² Woodward (private communication) now agrees with our analysis of
distortions in this tilt system.
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symmetry, particularly the changes in symmetry that
may occur in a phase transition.² We indicate here how
the results presented in this paper are obtained using
ISOTROPY.

First, ISOTROPY can calculate crystalline distortions
that have the symmetry of a given irrep. These distor-
tions can be macroscopic, such as strains, or microscopic,
such as atomic displacements or molecular rotations.
The group-theoretical methods for calculating micro-
scopic distortions have been explained by Stokes et al.
(1991). In this case we are looking for irreps which
produce tilt patterns which are rotations about the B
atoms. We specify the parent space group #221 and the
Wyckoff position (a). We also specify that we only want
to consider the irreps for k vectors at the points of
symmetry, ÿ, R, X and M for this space group. For each
irrep, ISOTROPY displays all the modes involving
rotations about the B atoms. ISOTROPY ®nds 24
modes, three from each of the three-dimensional irreps,
ÿ�4 , R�

4 , X�
3 , M�

3 , and six from each of the six-dimen-
sional irreps, X�

5 , M�
5 .

Shown in Table 2, as an example of the information
displayed by ISOTROPY, are the three modes asso-
ciated with M�

3 . Mode 1 consists of rotations about the z
axis. From the table we see that the octahedron at (0,0,0)
is tilted in the +z direction. The octahedron at (0,0,1) is
tilted in the same direction, whereas the octahedra at
(1,0,0) and (0,1,0) are tilted in the opposite direction.
Evidently, this is the b0b0a+ tilt pattern.

From a similar inspection of the other modes in this
table, and of modes associated with other irreps, we
identify the three M�

3 modes to be the b0b0a+, a+b0b0,
b0a+b0 tilt patterns and the three R�

4 modes to be the
b0b0aÿ, aÿb0b0, b0aÿb0 tilt patterns. The other 18 modes
found by ISOTROPY are rejected because they do not
maintain corner connectivity.

Once the irreps are known, we can obtain a list of
isotropy subgroups from ISOTROPY. This is how we
obtained the information presented in Table 1. The
group-theoretical methods for obtaining the isotropy
subgroups have been explained in greater detail by
Hatch & Stokes (1986). The algorithm for identifying
the space-group symmetry of each isotropy subgroup
has been discussed by Hatch & Stokes (1985). A
complete list of isotropy subgroups for irreps at k points
of symmetry for each of the 230 space groups has been
given by Stokes & Hatch (1988). The ®rst 11 isotropy
subgroups in Table 1 can be found in this reference. The
remaining four isotropy subgroups in Table 1 involve
more than one irrep at the same time and must be
calculated using ISOTROPY.

In addition, ISOTROPY can also calculate the
Wyckoff positions of the atoms in each isotropy
subgroup (given their Wyckoff positions in the parent
group). This information for the current case has been
tabulated by Woodward (1997a) in his Table 5.

Each of the group±subgroup relations shown in Fig. 1
represents a possible phase transition involving a single
irrep, which can be found in the work of Stokes & Hatch
(1988), or more easily by using ISOTROPY. For
example, the transition from I4/mmm to P42/nmc
involves a distortion which has the symmetry of the irrep
Mÿ

4 of I4/mmm. This is a one-dimensional irrep with
matrices (1) and (ÿ1). The Landau theory of phase
transitions (Landau & Lifshitz, 1980) allows this tran-
sition to be continuous (second order). We have iden-
ti®ed the irrep associated with each group±subgroup
relation in Fig. 1 and have determined whether the
Landau theory allows the transition to be continuous.
(This information is included in the tables of isotropy
subgroups presented by Stokes & Hatch, 1988, and can
also be obtained using ISOTROPY.) We found that four
of the transitions (those indicated by dashed lines in Fig.
1) are not allowed to be continuous.

One of us (CJH) acknowledges that discussions with
Drs B. A. Hunter and M. M. Elcombe have been useful
in clarifying certain aspects of the perovskite problem.
We are grateful to Dr P. M. Woodward for his comment
on our analysis of possible distortions in tilt system #17.
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addenda and errata

Coupling of the lactone-ring conforma-
tion with crystal symmetry in 6-hydroxy-
4,4,5,7,8-pentamethyl-3,4-dihydrocou-
marin. Erratum

Armand Budzianowski Andrzej Katrusiak,

Faculty of Chemistry, Adam Mickiewicz University, 60-780 PoznanÂ , Grunwaldzka 6,

60-780 Poznan, Poland

In the paper by Budzianowski & Katrusiak (2002) Acta Cryst.

(2002), B58, 125±133 Figs. 5 and 8 on pages 131 and 132 were

transposed while adjusting colour details indicated by the

authors in the proof. Revised PDF versions of these pages are

available in the online version of this erratum, which is

available through Crystallography Journals Online.

Two fluoradene derivatives: pseudosym-
metry, eccentric ellipsoids and a phase
transition. Erratum

Aibing Xia, John P. Selegue, Alberto Carrillo, Brian O.

Patrick, Sean Parkin and Carolyn Pratt Brock*

Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA

Numerous printing errors in the paper by Xia et al. [Acta

Cryst. (2001), B57, 507±516] are corrected.

In the paper by Xia et al. (2001) a number of special characters (0, �,

AÊ , �, �, oÈ ) were omitted in the printed and PDF versions of the

article; the HTML version, however, was correct. The corrected

version of the paper is now available from Crystallography Journals

Online.
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Group-Theoretical Analysis of Octahe-
dral Tilting in Perovskites. Erratum

Christopher J. Howarda* and Harold T. Stokesb

aAustralian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai

NSW 2234, Australia, and bDepartment of Physics and Astronomy, Brigham Young

University, Provo, Utah 84602-4675, USA

An error has been noted within Fig. 1 of the paper by Howard

& Stokes (1998). There is a group±subgroup relationship

between I4/mcm (a0a0cÿ) and C2/c (aÿbÿbÿ), and this should

be indicated on the ®gure by a continuous line joining the

corresponding boxes. The corrected version of the ®gure is

shown here.

Figure 1
A schematic diagram indicating the group±subgroup relationships among the 15
space groups tabulated by Howard & Stokes (1998). A dashed line joining a group
with its subgroup indicates that the corresponding phase transition is required by
Landau theory to be ®rst order.
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